Rotating waves during human sleep spindles organize global patterns of activity during the night

نویسندگان

  • Lyle Muller
  • Giovanni Piantoni
  • Dominik Koller
  • Sydney S Cash
  • Eric Halgren
  • Terrence J Sejnowski
چکیده

During sleep, the thalamus generates a characteristic pattern of transient, 11-15 Hz sleep spindle oscillations, which synchronize the cortex through large-scale thalamocortical loops. Spindles have been increasingly demonstrated to be critical for sleep-dependent consolidation of memory, but the specific neural mechanism for this process remains unclear. We show here that cortical spindles are spatiotemporally organized into circular wave-like patterns, organizing neuronal activity over tens of milliseconds, within the timescale for storing memories in large-scale networks across the cortex via spike-time dependent plasticity. These circular patterns repeat over hours of sleep with millisecond temporal precision, allowing reinforcement of the activity patterns through hundreds of reverberations. These results provide a novel mechanistic account for how global sleep oscillations and synaptic plasticity could strengthen networks distributed across the cortex to store coherent and integrated memories. DOI: 10.7554/eLife.17267.00

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rotating waves during human sleep spindles organize global patterns of activity that repeat precisely through the night

During sleep, the thalamus generates a characteristic pattern of transient, 11-15 Hz sleep spindle oscillations, which synchronize the cortex through large-scale thalamocortical loops. Spindles have been increasingly demonstrated to be critical for sleep-dependent consolidation of memory, but the specific neural mechanism for this process remains unclear. We show here that cortical spindles are...

متن کامل

Coordination of cortical and thalamic activity during non-REM sleep in humans

Every night, the human brain produces thousands of downstates and spindles during non-REM sleep. Previous studies indicate that spindles originate thalamically and downstates cortically, loosely grouping spindle occurrence. However, the mechanisms whereby the thalamus and cortex interact in generating these sleep phenomena remain poorly understood. Using bipolar depth recordings, we report here...

متن کامل

Sleep Spindles – As a Biomarker of Brain Function and Plasticity

Spindles appear in the EEG as sinusoidal waves with frequency in the range 11 to 16 Hz. Together with K-complexes they are the hallmarks of NREM sleep and their appearance is taken as evidence of the onset of light sleep. Their specific distribution and exact frequency, changes in early and late sleep during the night. Sleep spindles are also known as “sigma waves” a term initially recommended ...

متن کامل

Comparison of sleep-related cardiac autonomic function between rotating-shift and permanent night-shift workers.

The purpose of this study was to explore whether sleep-related cardiac sympathetic activity is significantly lower in rotating shift workers than in permanent night shift workers, in order to evaluate whether shift work is preferable to permanent night work. Our sample comprised of twelve permanent night shift nurses and twelve rotating three-shift nurses. All female nurses slept in their dormi...

متن کامل

Local Slow Waves in Superficial Layers of Primary Cortical Areas during REM Sleep

Sleep is traditionally constituted of two global behavioral states, non-rapid eye movement (NREM) and rapid eye movement (REM), characterized by quiescence and reduced responsiveness to sensory stimuli [1]. NREM sleep is distinguished by slow waves and spindles throughout the cerebral cortex and REM sleep by an "activated," low-voltage fast electroencephalogram (EEG) paradoxically similar to th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016